Cambridge Assessment International Education

Cambridge Ordinary Level

MATHEMATICS (SYLLABUS D)
4042/22
Paper 2
October/November 2017
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working soi
seen or implied	

Question	Answer	Marks	Partial Marks
1(a)	A by 240	$\mathbf{4}$	

Question	Answer	Marks	Partial Marks
2(c)	49.3	3	M1 for $(12 \times 10+28 \times 30+45 \times 50+22 \times 70+13 \times 90)$ and B1 dep for their $\Sigma f x \div 120$
3(a)	$\left(\begin{array}{l}5 \\ 6 \\ 8\end{array}\right)$ cao	1	
3(b)(i)	$\binom{440}{540}$ cao	2	B1 for one element correct
3(b)(ii)	The amount Anya makes for men's Tshirts and women's T-shirts	1	
3(c)(i)	$\left(\begin{array}{lll}290 & 630 & 537.5[0]\end{array}\right)$	2	B1 for two correct values seen in a row of 3 elements or column of 3 elements isw
3(c)(ii)	48.7\%	3	M1FT for their $(440+540)$ and their $(290+630+$ 537.5) and M1 for (their 1457.5 - their 980) \div their 980 oe
4(a)(i)	Triangle B at $(4,-1),(4,-4),(5,-4)$	2	B1 For triangle B the correct size and orientation
4(a)(ii)	Triangle C at (1, 4), $(3,4)(3,-2)$	2	B1 for correct size and orientation, incorrect position or for triangle with two vertices correct or for triangle at $(-3,0),(-5,0),(-5,6)$
4(b)(i)	Triangle Q at (3, 1), (9, 1), (6, 3)	2	B1 for coordinates $(3,1),(9,1)$ and $(6,3)$ soi or for triangle with two vertices correct
4(b)(ii)	(Stretch) factor 3 y-axis invariant or parallel to x-axis	2	B1 for either

Question	Answer	Marks	Partial Marks
5(a)	$\frac{14-x}{(x-2)(x+1)}$ Final answer	2	M1 for $\frac{4(x+1)-5(x-2)}{(x-2)(x+1)}$ or better soi
5(b)	-4 or 1.5 oe	3	B1 for $2 x^{2}+5 x-12[=0] \quad$ and M1 for $(2 x-3)(x+4)[=0]$ OR M1 for FT factorising their 3-term quadratic equation Or for correct FT substitution into formula oe and A1FT for solutions from their quadratic equation
5(c)(i)	$\begin{aligned} & 3 p+2 n=4.8[0] \text { or } 3 p+2 n=480 \\ & 5 p+4 n=9[.00] \text { or } 5 p+4 n=900 \end{aligned}$	1	
5(c)(ii)	$\begin{aligned} & 0.6[0] \\ & 1.5[0] \end{aligned}$	3FT	M1 for a correct method to eliminate one variable A1 for either $p=0.6[0]$ or $n=1.5[0]$ www After A0, B1FT for a correct substitution to find the other variable After 0, SC1 for a pair of values that satisfy either equation
6(a)(i)	1	1	
6(a)(ii)	$10,12,14,15,16,18,20$	1	
6(a)(iii)	$\frac{7}{11} \mathrm{oe}$	1	
6(b)(i)	8	2	M1 for $14+10+24-x=40$ oe or for correct Venn diagram with algebraic expressions. Or B1 for Venn diagram with at least 3 numbers correct

Question	Answer	Marks	Partial Marks
6(b)(ii)	$\frac{28}{45} \text { oe }$	2FT	M1 for $\frac{\text { their } 8}{k} \times \frac{\text { their } 7}{k-1}[\times 2] \quad$ where $k>$ their 8 Or $\mathbf{S C 1}$ for $\left(\frac{\text { their } 8}{10}\right)^{2}$
7(a)(i)	-4.5-4.5	1	Both correct
7(a)(ii)	Correct smooth curve	3FT	B2FT for 8 or 9 points correctly plotted Or B1FT for 6 or 7 points correctly plotted Or $\mathbf{B 1}$ for the correct scales drawn
7(a)(iii)	-2.4 to -1.6 dependent on tangent drawn	2	Accept a correctly formed $\Delta y \div \Delta x$ isw B1 for tangent drawn at $(3,1.5)$
7(a)(iv)(a)	-2 cao		
7(a)(iv)(b)	-2.4 to -2.3 and 4.3 to 4.4		FT reading their graph at $y=$ their -2 Tolerance ± 1 small square B1 FT for one correct
7(b)(i)	4	1	
7(b)(ii)	3	1	
7(b)(iii)	324	1	
8(a)(i)	$\begin{aligned} & \frac{y}{2} \text { oe } \\ & \text { angle at centre }=\text { twice angle at } \\ & \text { circumference oe } \end{aligned}$	2	$\mathbf{B} 1 \text { for } \frac{y}{2}$
8(a)(ii)	$90-y \text { oe }$ [Angle between] radius and tangent $=90^{\circ}$, [sum of angles in a triangle]	2	B1 for $90-y$

Question	Answer	Marks	Partial Marks
8(a)(iii)	$2 y$ oe or $2(90$ - their (a)(ii)) or 180-2 their (a)(ii) Angle in semicircle $=90^{\circ}$	2FT	FT dependent on expressions in y B1 for $2 y$
8(b)	EFC	1	
8(c)	Any two of - $\angle O C G$ is common oe - $\angle A D C=\angle O G C\left[=90^{\circ}\right]$ - $\angle D A C=\angle G O C[=y]$ with no incorrect reason or fact stated	2	B1 for one pair of angles
8(d)	Trapezium	1	
8(e)(i)	1:4 oe	1	
8(e)(ii)	1:8 oe	1	
9(a)	7.54	2	M1 for $\pi \times 0.4^{2} \times 15$
9(b)	53.7	4	M1 for $\frac{1}{2} \times 4.5^{2} \times \sin 110$ oe M1 for $\frac{250}{360} \times \pi \times 4.5^{2}$ or $\frac{110}{360} \times \pi \times 4.5^{2}$ M1 for their $9.514+$ their 44.18 oe
9(c)	2 minutes 20 seconds	2	M1 for figs $175 \div 45$ soi

Question	Answer	Marks	Partial Marks
9(d)	146.5°	4	B3 for 33.5° Or M2 for $\sin Q=\frac{450 \sin 62}{720} \quad$ Or M1 for $\frac{\sin Q}{450}=\frac{\sin 62}{720}$ AND M1 for 180 - their Q
10(a)	$3 x^{2}+16 x-460=0$ correctly derived	4	B1 for $(x+4)(3 x+4)$ oe and M1 for expanding brackets and collecting like terms and M1 for their area $=476$ and A1 for correct simplification leading to $3 x^{2}+16 x-460=0$
10(b)	$10 \text { and }-\frac{46}{3} \text { oe }(-15.3)$	3	B2 for $(x-10)(3 x+46)$ Or M1 for such as $(x+a)(3 x+b)$ with $a b=-460$ or $3 a+b=16$ A1FT for solutions from their factors
10(c)	$\begin{aligned} & {[\text { Height }=] 14} \\ & {[\text { Length }=] 34} \end{aligned}$	2FT	B1FT for either, or for both correct but in the wrong places
10(d)	61.6 or $16($ their + ve root +1$) \times 0.35$	3FT	M2 for (their 476 - their $10 \times$ their 30$) \times 0.5 \times 0.7$ oe Or M1 for their 476 - their $10 \times$ their 30 oe

Question	Answer	Marks	Partial Marks
11(a)	Need to see 2.58 rounded from a correctly obtained 2581 or better.	3	Method 1 M2 for $A Y=3.65 \cos 45$ or $(3.65 \div 2) \div \sin 45$ or M1 for e.g. $\frac{A Y}{3.65}=\cos 45$ or $\sin 45=\frac{3.65 \div 2}{A Y}$ Method 2 M1 for such as $A Y^{2}+A Y^{2}=3.65^{2}$ or $3.65^{2}+3.65^{2}=A C^{2}$ soi M1 for $A Y^{2}=\frac{3.65^{2}}{2}$ oe A1 for $A Y=2.580[9 \ldots]$
11(b)	7.93	2	M1 for $7.5^{2}+2.58^{2}$
11(c)	$26.6^{\circ} \text { or } 2 \sin ^{-1}\left(\frac{0.5 \times 3.65}{\text { their } 7.93}\right)$	3FT	M2 for $2 \sin ^{-1}\left(\frac{0.5 \times 3.65}{\text { their } 7.93}\right)$ or $\cos [\ldots]=\frac{\text { their } 7.93^{2}+\text { their } 7.93^{2}-3.65^{2}}{2 \times \text { their } 7.93^{2}}$ Or M1 for $\sin [\ldots]=\frac{0.5 \times 3.65}{\text { their } 7.93}$ or $3.65^{2}=$ their $7.93^{2}+$ their $7.93^{2}-2 \times$ their $7.93^{2} \times$ $\cos [\ldots]$
11(d)(i)	11.18 or 11.2	2	M1 for $\tan 77=\frac{X Y}{2.58}$ oe
11(d)(ii)	80.7°	2FT	M1 for $\tan [\ldots]=\frac{\text { their } 11.2}{3.65 \div 2}$

